�
�title �Component Categories�
OLE Program Management
December 1995

Distribution: Public
© Copyright Microsoft Corporation,�date \@ " yyyy"� 1995�. All Rights Reserved.

DRAFT
The categorization of a COM class – roughly what interfaces and related usage it supports – is currently exposed via registry keys such as Insertable and NotInsertable, Control, and DataSource. This mechanism is ill-defined and unsuitable for the large numbers of categories expected in a complex COM-based system. A more robust and well-defined mechanism for categorizing COM objects is defined in this document.
�TOC \o "1-3"�1. Introduction	� GOTOBUTTON _Toc342710026  � PAGEREF _Toc342710026 �2��
1.1 Categorizing By Component Capabilities	� GOTOBUTTON _Toc342710027  � PAGEREF _Toc342710027 �2��
1.2 Categorizing By Container Capabilities	� GOTOBUTTON _Toc342710028  � PAGEREF _Toc342710028 �3��
1.3 Default Classes and Associations	� GOTOBUTTON _Toc342710029  � PAGEREF _Toc342710029 �4��
1.4 Defining Component Categories	� GOTOBUTTON _Toc342710030  � PAGEREF _Toc342710030 �5��
1.5 Associating Icons with a Category	� GOTOBUTTON _Toc342710031  � PAGEREF _Toc342710031 �5��
2. Component Categories API	� GOTOBUTTON _Toc342710032  � PAGEREF _Toc342710032 �6��
2.1 Backwards Compatiblity Support	� GOTOBUTTON _Toc342710033  � PAGEREF _Toc342710033 �9��
2.2 The ICatRegister Interface	� GOTOBUTTON _Toc342710034  � PAGEREF _Toc342710034 �9��
2.2.1 RegisterCategories	� GOTOBUTTON _Toc342710035  � PAGEREF _Toc342710035 �10��
2.2.2 UnRegisterCategory	� GOTOBUTTON _Toc342710036  � PAGEREF _Toc342710036 �10��
2.2.3 RegisterClassImplCategories	� GOTOBUTTON _Toc342710037  � PAGEREF _Toc342710037 �10��
2.2.4 UnRegisterClassImplCategories	� GOTOBUTTON _Toc342710038  � PAGEREF _Toc342710038 �11��
2.2.5 RegisterClassReqCategories	� GOTOBUTTON _Toc342710039  � PAGEREF _Toc342710039 �11��
2.2.6 UnRegisterClassReqCategories	� GOTOBUTTON _Toc342710040  � PAGEREF _Toc342710040 �12��
2.3 The ICatInformation Interface	� GOTOBUTTON _Toc342710041  � PAGEREF _Toc342710041 �12��
2.3.1 EnumCategories	� GOTOBUTTON _Toc342710042  � PAGEREF _Toc342710042 �13��
2.3.2 GetCategoryDesc	� GOTOBUTTON _Toc342710043  � PAGEREF _Toc342710043 �13��
2.3.3 EnumClassesOfCategories	� GOTOBUTTON _Toc342710044  � PAGEREF _Toc342710044 �14��
2.3.4 IsClassOfCategories	� GOTOBUTTON _Toc342710045  � PAGEREF _Toc342710045 �14��
2.3.5 EnumImplCategoriesOfClass	� GOTOBUTTON _Toc342710046  � PAGEREF _Toc342710046 �14��
2.3.6 EnumReqCategoriesOfClass	� GOTOBUTTON _Toc342710047  � PAGEREF _Toc342710047 �15��
3. Registry Entries	� GOTOBUTTON _Toc342710048  � PAGEREF _Toc342710048 �15��
�
Note: This document is an early release of the final specification. It is meant to specify and accompany software that is still in devel�opment. Some of the information in this documentation may be inaccurate or may not be an accurate representation of the func�tionality of the final specification or software. Microsoft assumes no responsibility for any damages that might occur either directly or indirectly from these inaccuracies. Microsoft may have trademarks, copyrights, patents or pending patent applications, or other intellectual property rights covering subject matter in this document. The furnishing of this document does not give you a license to these trademarks, copyrights, patents, or other intellectual property rights.
Introduction
Being able to group COM classes based on their category is extremely useful. Building lists of available classes for a particular task which the user may choose from, an object which automatically chooses to aggregate in the closest/smallest/most-efficient class from those available, and type browsers for COM development tools are just some examples of using such categorization information.�
When we speak of the category of a COM class, though, we are talking about more than just the interfaces an instance will support (its “interface signature”). We are far more interested in the way in which an instance may be used – in the class’s richer usage capabilities. The interface signature alone is often insufficient; knowing, for example, which classes support IDataObject doesn’t help you decide which ones are actually IDataObject-based text converters. In essence, using only interface signatures to convey categorization precludes convenient reuse of generic interfaces, which is a key goal of COM.� In addition, because creating an instance of a component can be an expensive operation, there is often the requirement that identification of a class's "richer usage capabilities" be made without instantiation. 
The current ad-hoc categorization mechanism for COM classes is to add a human-readable subkey to the CLSID of the class’s registry information. For example, the HKEY_CLASSES_ROOT\CLSID\{...}\Insertable� XE "Insertable" � key indicates that a class is insertable as an OLE object (meaning that an instance of the class is expected to support at least the IOleObject, IPersistStorage, IDataObject, and a handful of other interfaces in a well-defined way).
Using such human-readable keys is convenient for the component builder but is unsuitable for installations with large numbers of categories, where collisions in human-readable keys invented by multiple parties would cause confusion at best and failures at worst. 
With the widespread use of COM components and "container applications" for those components, there also arises the requirement of being able to identify what container functionality a component requires, and this identification has to be made before the component is instantiated.�
For these reasons, and to better consolidate component categories under each class’s CLSID root key, a set of registry entries is defined, and a set of APIs, to wrap the manipulation of these keys, is introduced; which we call component categories.
Categorizing By Component Capabilities
As mentioned above, in many user interface scenarios containers need to be able to display to the user some subset of all of the components installed on the machine. In the past this has been accomplished by defining registry keys such as "Insertable" or "Control". Component categories provides a richer, more extensible, and more robust mechanism for doing the same thing. Each component category is identified by a GUID, referred to as a Category ID or CATID. Each category ID has a list of locale-tagged, human-readable names associated with it. A list of the category IDs, along with the human-readable name, is stored in a well known location in the system registry. 
For example, all components that implement the functionality required to be used in OLE document embedding scenarios can be classified within a component category. Historically, these objects have been identified by the "Insertable" key in the registry. Using component categories instead, there would be the following information in the registry: 
HKEY_CLASSES_ROOT\Component Categories\{40FC6ED3-2438-11cf-A3DB-080036F12502} 
						= (default)� - “”
						= 409 - “OLE Document Embeddings”
Each class that implements the functionality corresponding to a component category lists the category ID for that category within its CLSID key in the registry. Because a single component can support a wide range of functionality, components may belong to multiple component categories. For example, a particular OLE Control might support all of the functionality required to participate as OLE Document embedding, Visual Basic data binding, and internet functionality. Such a control would have the following information stored within its CLSID key in the registry:
; The CLSID for  “My Super OLE Control”  is {12345678-ABCD-4321-0101-00000000000C}
HKEY_CLASSES_ROOT\CLSID\{12345678-ABCD-4321-0101-00000000000C}\Implemented Categories

; The CATID for "Insertable" is {40FC6ED3-2438-11cf-A3DB-080036F12502}
HKEY_CLASSES_ROOT\CLSID\{12345678-ABCD-4321-0101-00000000000C}\Implemented Categories\{40FC6ED3-2438-11cf-A3DB-080036F12502}

; The CATID for "Control" is {40FC6ED4-2438-11cf-A3DB-080036F12502}
HKEY_CLASSES_ROOT\CLSID\{12345678-ABCD-4321-0101-00000000000C}\Implemented Categories\{40FC6ED4-2438-11cf-A3DB-080036F12502}

; The CATID for an internet aware control is {...CATID_InternetAware...}
HKEY_CLASSES_ROOT\CLSID\{12345678-ABCD-4321-0101-00000000000C}\Implemented Categories\{... CATID_InternetAware...}

With this information, a container can enumerate the controls installed on a user’s system and display only the controls that support some functionality the container requires. In other words, component categories provide a way to categorize components by the implemented functionality of the component.
Categorizing By Container Capabilities
The previous section discussed using component categories to allow a container to enumerate the controls installed on a user’s system and display only the controls that support some functionality the container requires. However components often require certain functionality from the container, and simply will not work with a container that does not provide that functionality. It is inappropriate to force the end user to choose a component, only to find out that it is not suitable for the task at hand. Instead, the user interface should be able to filter out components that require functionality the container does not support. For this reason, the concept of categorizing components by required container functionality is introduced.
Simple frame OLE controls are a good example of components that require functionality from the container (i.e., the container must implement ISimpleFrameSite) and do not work in containers that do not support that  functionality. 
Categorizing by container capabilities is accomplished through an additional registry key within the component's CLSID key: Required Categories. To illustrate, below are the relevant registry entries for a simple frame control:
; The CLSID for  “Revo's Simple Frame Control”  is {123456FF-ABCD-4321-0101-00000000000C}
HKEY_CLASSES_ROOT\CLSID\{123456FF-ABCD-4321-0101-00000000000C}\Implemented Categories

; The CATID for "Control" is {40FC6ED4-2438-11cf-A3DB-080036F12502}
HKEY_CLASSES_ROOT\CLSID\{123456FF-ABCD-4321-0101-00000000000C}\Implemented Categories\{40FC6ED4-2438-11cf-A3DB-080036F12502}

; The CATID for simple frame controls is {...CATID_ SimpleFrameControl...}
HKEY_CLASSES_ROOT\CLSID\{123456FF-ABCD-4321-0101-00000000000C}\Implemented Categories\{...CATID_SimpleFrameControl...}
HKEY_CLASSES_ROOT\CLSID\{123456FF-ABCD-4321-0101-00000000000C}\Reqruied Categories\{...CATID_SimpleFrameControl...}

As illustrated by this example, a component can belong to component categories that indicate supported functionality and component categories that indicate required functionality.
Required categories should be used with care, because they severely restrict the ways in which a component can be used.  While implemented categories are hints to a container about what functionality a component supports, required categories indicate that the component can be used only in a very specific scenario. In general, components should be coded so that they are useful regardless of what services the container/user provides; and so that their functionality is degraded gracefully if some container-provided service is not available at run time.
A complete example using OLE controls.  Assume the following component categories are defined for OLE controls:
Category�Impl.�Req.�Description��CATID_Control�Yes�No�Indicates that the component is an OLE control.  The minimum requirements for this are support for IOleControl, IPersistStreamInit, and IDispatch.��CATID_VBDataBound�Yes�Yes�Indicates that the component supports VB data binding. If specified as a required category, indicates that the component will work only in a container that supports VB data binding.��CATID_SimpleFrame�Yes�Yes�Indicates that the component is a simple frame control.  If specified as a required category, indicates that the component will work only in a container that supports VB data binding.�������Assume that installed on the user’s system are the following controls:
; The button control is just a generic OLE Control that supports no additional functionality.  It will
; work in any OLE Control container.
HKCR�\CLSID\{...CLSID_Button...}\Implemented Categories
HKCR\CLSID\{...CLSID_Button...}\Implemented Categories\{...CATID_Control...}

; The MyDBControl can use VB data binding if the container supports it.  However, it's been coded 
; so that it will work in containers that do not support VB data binding (perhaps via a different
; database API)
HKCR\CLSID\{...CLSID_MyDBControl...}\Implemented Categories
HKCR\CLSID\{...CLSID_MyDBControl...}\Implemented Categories\{...CATID_Control...}
HKCR\CLSID\{...CLSID_MyDBControl...}\Implemented Categories\{...CATID_VBDatabound...}

; The GroupBox control is a simple frame control.  It relies on the container implementing the
; ISimpleFrameSite interface, and thus will only work correctly in such containers.
HKCR\CLSID\{...CLSID_GroupBox...}\Implemented Categories
HKCR\CLSID\{...CLSID_GroupBox...}\Implemented Categories\{...CATID_Control...}
HKCR\CLSID\{...CLSID_GroupBox...}\Implemented Categories\{...CATID_SimpleFrame...}
HKCR\CLSID\{...CLSID_GroupBox...}\Required Categories\{...CATID_impleFrame...}

In our example, a container that supports VB data bound controls, but not simple frame controls, would specify CATID_Control and CATID_VBDatabound to the insert control user interface.  The list of controls displayed to the user would contain CLSID_Button and CLSID_MyDbControl, but not CLSID_GroupBox.
Default Classes and Associations
� XE "Default Classes " \b �� XE "Associations" \b �For certain categories, users and tools want to associate a single class as the default class� XE "default class" � to choose in any scenario requiring that category  of object. The manner in which file extensions are currently associated with executables is an example of this sort of behavior and user interface. Extending this to components, a package may ship with its own e-mail editor or web browser; however, having designed these features as components to standard interfaces, and having introduced a CATID that identifies exchangeable component, they would like the user to be able to choose their preferred editor or browser in all UI situations where one is to be created.
Note that this capability is not useful for all component categories: establishing a default Insertable class, or some sort of default graphic filter class is not at generally useful or necessary. Generally speaking, establishing a default class is useful when some class must be loaded from a list of possible classes without intervention by an interactive user and yet the consumer of the service provided by the class does not want to be hard-wired to a particular implementation. Users and/or administrators can externally define which class is to be used by such consumers by manipulating the registry. For example, a UI-less background multimedia rendering tool may need to load an MPEG filter component, and there are a dozen such filter components available on the market and perhaps several on a given machine. In that case, as part of the installation process the rendering tool would ask the user to specify which filter component to use by default. 
To associate a default class with a category, introduce a CLSID key whose CLSID is the same as the CATID of the component category in question. Add the TreatAs� XE "TreatAs" \b � key to this key, with a value of the CLSID of the default class for this category. Tools (and applications the user is running) which want to use the default class for an component category simply use CoCreateInstance or CoGetClassObject and specify the CATID for the CLSID parameter, which will automatically redirect to the CLSID established as the default for this category via this key.
HKEY_CLASSES_ROOT\CLSID\{…catid…}\TreatAs	= {… default clsid…}�
During installation, a component can check for the existence of any default class keys for its categories and present the user with options for overriding their current settings. Further user interface to allow the user to select between compatible classes post-install can also be helpful: examples include a control panel application that allows the user to choose between compatible e-mail editors or browsers, or a drop-down list in an application’s Options dialog box that allows the user to select among compatible text or graphic editors.�
Defining Component Categories
In general, the author of a component category definition will simply create a unique GUID (the CATID), which is published along with the definition. Other parties, object builders or tools, then know the definition of this type and can make use of classes which support it. Like the method signature of an interface which is immutable once shipped, a category’s semantics should not be modified after being installed as part of a shipping product. It is preferable to maintain backward compatibility of the category by simply introducing a new category identifier with the revised semantics.
Because interface identifiers (IID) and component category identifiers (CATID) exist in different name spaces, it appears as though it is possible to use the same GUID value for both an IID and a CATID. However, because IIDs are often used for the CLSID of the interface’s proxy/stub server, there is the potential for conflict (especially in the default class scenario described below). Therefore, using the same GUID for an IID and CATID is strictly prohibited.
Associating Icons with a Category
In building a user interface for selecting component categories and the components within a category, the ability to display a meaningful image for a category is required. To facilitate this, we leverage the DefaultIcon and ToolboxBitmap32 keys already defined by OLE Documents and OLE Controls.
To associate an icon with a component category, create a key in HKEY_CLASSES_ROOT\CLSID for the category’s CATID and populate that key with a DefaultIcon subkey. For example:
HKEY_CLASSES_ROOT\CLSID\{…catid…}\DefaultIcon	= “c:\hello\icons.dll,1”�
The file name referenced by the DefaultIcon key can be a .EXE or .DLL file (and can be a resource-only .DLL).
To associate a small 16x16 toolbox bitmap with a component category, create a key in HKEY_CLASSES_ROOT\CLSID for the category’s CATID and populate that key with a ToolboxBitmap32 subkey. For example:
HKEY_CLASSES_ROOT\CLSID\{…catid…}\ToolboxBitmap32	= “c:\goodbye\mycomponent.dll,42”�
The file name referenced by the ToolboxBitmap32 key can be a .EXE or .DLL file (and can be a resource-only .DLL).
Component Categories API
To facilitate using component categories, an in-process server will be provided that implements the interfaces described below. This component, called the Component Category Manager, will have a CLSID of TBD. This component supports aggregation so that it can be extended by third parties.�
// CLSID_StdComponentCategoryMgr: {00000185-0000-0000-c000-000000000046}� XE "CLSID_ComponentCategoryManager"\b �

The IDL file (comcat.idl) for Component Categories is given below.
//+-------------------------------------------------------------------------
//
//  Microsoft Windows
//  Copyright (C) Microsoft Corporation, 1992 - 1995.
//
//  File: comcat.idl
//
//  Component Categories interfaces
//
//--------------------------------------------------------------------------

#ifndef DO_NO_IMPORTS
import "unknwn.idl";
#endif

interface IEnumGUID;
interface IEnumCATEGORYINFO;
interface ICatRegister;
interface ICatInformation;

/****************************************************************************
 *  Generic GUID Enumerator
 ****************************************************************************/

[
    object,
    uuid(00000180-0000-0000-c000-000000000046),
    pointer_default(unique)
]

interface IEnumGUID : IUnknown
{
    typedef [unique] IEnumGUID *LPENUMGUID;
    typedef [unique] IEnumGUID *PENUMGUID;

    [local]
    HRESULT __stdcall Next(
        [in] ULONG celt,
        [out] GUID *rgelt,
        [out] ULONG *pceltFetched);

    [call_as(Next)]
    HRESULT __stdcall RemoteNext(
        [in] ULONG celt,
        [out, size_is(celt), length_is(*pceltFetched)] GUID *rgelt,
        [out] ULONG *pceltFetched);


    HRESULT Skip(
        [in] ULONG celt);

    HRESULT Reset();

    HRESULT Clone(
        [out] IEnumGUID **ppenum);
}

cpp_quote("#define IID_IEnumCLSID		IID_IEnumGUID")
cpp_quote("#define IEnumCLSID			IEnumGUID")
#define IEnumCLSID			IEnumGUID

/****************************************************************************
 *  Component Categories Interfaces
 ****************************************************************************/

typedef GUID CATID;
typedef REFGUID REFCATID;
cpp_quote("#define CATID_NULL			GUID_NULL")
cpp_quote("#define IsEqualCATID(rcatid1, rcatid2)	IsEqualGUID(rcatid1, rcatid2)")
cpp_quote("#define IID_IEnumCATID		IID_IEnumGUID")
cpp_quote("#define IEnumCATID			IEnumGUID")
#define IEnumCATID			IEnumGUID

[
    object,
    uuid(00000181-0000-0000-c000-000000000046),
    pointer_default(unique)
]

interface IEnumCATEGORYINFO : IUnknown
{
	typedef struct tagCATEGORYINFO {
	    CATID		catid;
	    LCID		lcid ;
	    OLECHAR*	szDescription;
    } CATEGORYINFO;


    [local]
    HRESULT __stdcall Next(
        [in] ULONG celt,
        [out] CATEGORYINFO *rgelt,
        [out] ULONG *pceltFetched);

    [call_as(Next)]
    HRESULT __stdcall RemoteNext(
        [in] ULONG celt,
        [out, size_is(celt), length_is(*pceltFetched)]
        CATEGORYINFO *rgelt,
        [out] ULONG *pceltFetched);


    HRESULT Skip(
        [in] ULONG celt);

    HRESULT Reset();

    HRESULT Clone(
        [out] IEnumCATEGORYINFO **ppenum);
}


// Category ID Registration
[
    object, 
    uuid(00000182-0000-0000-c000-000000000046),
    pointer_default(unique)
]
interface ICatRegister : IUnknown
{
   HRESULT RegisterCategories(
        [in] ULONG cCategories, 
        [in, size_is(cCategories)] CATEGORYINFO rgCategoryInfo[]);

    HRESULT UnRegisterCategories(
        [in] ULONG cCategories, 
        [in, size_is(cCategories)] CATID rgcatid[]);

    HRESULT RegisterClassImplCategories(
        [in] REFCLSID rclsid, 
        [in] ULONG cCategories, 
        [in, size_is(cCategories)] CATID rgcatid[]);

    HRESULT UnRegisterClassImplCategories(
        [in] REFCLSID rclsid,
        [in] ULONG cCategories, 
        [in, size_is(cCategories)] CATID rgcatid[]);

    HRESULT RegisterClassReqCategories(
        [in] REFCLSID rclsid, 
        [in] ULONG cCategories, 
        [in, size_is(cCategories)] CATID rgcatid[]);

    HRESULT UnRegisterClassReqCategories(
        [in] REFCLSID rclsid,
        [in] ULONG cCategories, 
        [in, size_is(cCategories)] CATID rgcatid[]);
}

[
    object, 
    uuid(00000183-0000-0000-c000-000000000046),
    pointer_default(unique)
]
interface ICatInformation : IUnknown
{
    cpp_quote("    // Category Information")
    HRESULT EnumCategories(
		[in] LCID lcid, 
	  	[out] IEnumCATEGORYINFO** ppenumCategoryInfo);

    HRESULT GetCategoryDesc(
        [in] REFCATID rcatid, 
        [in] LCID lcid, 
        [out] LPOLESTR* ppszDesc);

    cpp_quote("    // Class/Category mapping")
    HRESULT EnumClassesOfCategories(
	[in] ULONG cImplemented,
	[in,size_is(cImplemented)] CATID rgcatidImpl[],
	[in] ULONG cRequired,
	[in,size_is(cRequired)] CATID rgcatidReq[],
	[out] IEnumCLSID** ppenumClsid);

    HRESULT IsClassOfCategories(  
	[in] REFCLSID rclsid, 
	[in] ULONG cImplemented,
	[in,size_is(cImplemented)] CATID rgcatidImpl[],
	[in] ULONG cRequired,
	[in,size_is(cRequired)] CATID rgcatidReq[]);

    HRESULT EnumImplCategoriesOfClass(
        [in] REFCLSID rclsid, 
        [out] IEnumCATID** ppenumCatid);

    HRESULT EnumReqCategoriesOfClass(
        [in] REFCLSID rclsid, 
        [out] IEnumCATID** ppenumCatid);
}

cpp_quote("DEFINE_GUID(CLSID_StdComponentCategoryMgr, 0x30df3438, 0x266, 0x11cf, 0xba, 0xa6, 0x0, 0xaa, 0x0, 0x3e, 0xe, 0xed);")
Backwards Compatibility Support
To facilitate adoption of component categories and to simplify client code, a mapping of existing CLSID registry keys to component categories is provided by the Component Category Manager. Mappings are provided for the following keys:
Insertable - Denotes an embeddable OLE Documents object. The suggested human-readable name for this component category is “Embeddable Object”.
Control - Denotes an OLE control. 
Programmable - Denotes an object that supports OLE Automation.
IsShortcut - Used by the shell.
NeverShowExt - Used by the shell.
DocObject - Used by Office 95.
Printable - Used by Office 95.
The implementation of ICatInformation will automatically use the appropriate "old" registry key when given the category identifiers for any of these categories. For example, calling ICatInformation::EnumClassesOfCategory using CATID_Insertable will return an object that will enumerate over all objects registered with either the “Insertable” or “CompoenentCategories\{…CATID_Insertable…}” keys. 
// Special case CategoryIDs� XE "Special case CategoryIDs" \b �
DEFINE_GUID(CATID_Insertable, 40FC6ED3-2438-11cf-A3DB-080036F12502);
DEFINE_GUID(CATID_Control, 40FC6ED4-2438-11cf-A3DB-080036F12502);
DEFINE_GUID(CATID_Programmable, 40FC6ED5-2438-11cf-A3DB-080036F12502);
DEFINE_GUID(CATID_IsShortcut, 40FC6ED6-2438-11cf-A3DB-080036F12502);
DEFINE_GUID(CATID_NeverShowExt, 40FC6ED7-2438-11cf-A3DB-080036F12502);
DEFINE_GUID(CATID_DocObject, 40FC6ED8-2438-11cf-A3DB-080036F12502);
DEFINE_GUID(CATID_Printable, 40FC6ED9-2438-11cf-A3DB-080036F12502);

There is no provision for a completely extensible mechanism for mapping previously defined CLSID registry keys to component categories. 
The ICatRegister Interface
The ICatRegister� XE "ICatRegister Interface" \b � interface provides methods for registering and unregistering component category information.
interface ICatRegister : IUnknown
{
    HRESULT RegisterCategories(
        [in] ULONG cCategories, 
        [in, size_is(cCategories)] CATEGORYINFO rgCategoryInfo[]);

    HRESULT UnRegisterCategories(
        [in] ULONG cCategories, 
        [in, size_is(cCategories)] CATID rgcatid[]);

    HRESULT RegisterClassImplCategories(
        [in] REFCLSID rclsid, 
        [in] ULONG cCategories, 
        [in, size_is(cCategories)] CATID rgcatid[]);

    HRESULT UnRegisterClassImplCategories(
        [in] REFCLSID rclsid,
        [in] ULONG cCategories, 
        [in, size_is(cCategories)] CATID rgcatid[]);

    HRESULT RegisterClassReqCategories(
        [in] REFCLSID rclsid, 
        [in] ULONG cCategories, 
        [in, size_is(cCategories)] CATID rgcatid[]);

    HRESULT UnRegisterClassReqCategories(
        [in] REFCLSID rclsid,
        [in] ULONG cCategories, 
        [in, size_is(cCategories)] CATID rgcatid[]);
};
RegisterCategories
HRESULT RegisterCategories (cCategories, rgCategoryInfo) � XE "ICatRegister Interface:RegisterCategories" �
Registers one or more component categories. Each component category consists of a CATID and a list of locale-dependent description strings. 
Argument	Type	Description
cCategories	ULONG	Number of component categories to register.
rgCategoryInfo	CATEGORYINFO*	Array of cCategories CATEGORYINFO structures. By providing the same CATID for multiple CATEGORYINFO structures, multiple locales can be registered for the same component category. 
return value	S_OK	Success.
E_INVALIDARG	One or more arguments are incorrect.
others	Registry manipulation or GUID to string routine errors.
UnRegisterCategory
HRESULT UnRegisterCategory(cCategories, rgcatid) � XE "ICatRegister Interface:UnRegisterCategories" �
Removes the registration of one or more component categories. Each component category consists of a CATID and a list of locale-dependent description strings. 
Argument	Type	Description
cCategories	ULONG	Number of cCategories CATIDs to be removed.
rgcatid	REFCATID	Array of cCategories TYPID. Identifies the categories to be removed.
return value	
	S_OK	Success.
	E_INVALIDARG	One or more arguments are incorrect.
	others	Registry manipulation or GUID to string routine errors.
This call will be successful even if one or more of the category IDs specified are not registered.
Note that this method does not remove the component category tags from individual classes. Use the UnRegisterClassCategories method instead.
RegisterClassImplCategories
HRESULT RegisterClassImplCategories(rclsid, cCategories, rgcatid) � XE "ICatRegister Interface:RegisterClassCategories" �
Registers the class as implementing one or more component categories. On success, subsequent calls on the same machine to IsClassOfCategory(rclsid, catid), with catid an element of the rgcatid array, will return S_TRUE.
On error, some, but not all, of the category identifiers may have been successfully registered to the class in the system. That is, this function is not required to restore the caller to the exact state prior to the call.
Argument	Type	Description
rclsid	REFCLSID	Class ID of the class to set category information about.
cCategories	ULONG	Number of category GUIDs to associate as category identifiers for the class.
rgcatid	CATID*	Array of cCategories CATID to associate as category identifiers for the class.
return value	
	S_OK	Success.
	E_INVALIDARG	One or more arguments are incorrect.
	others	Registry manipulation or GUID to string routine errors.
UnRegisterClassImplCategories
HRESULT UnRegisterClassImplCategories(rclsid, cCategories, rgcatid) � XE "ICatRegister Interface:UnRegisterClassCategories" �
Removes one or more "implemented" category identifiers from a class. This is the inverse of the RegisterClassImplCategories method.
On error, some, but not all, of the category identifiers may have been successfully removed from the class. That is, this function is not required to restore the caller to the exact state prior to the call.
Argument	Type	Description
rclsid	REFCLSID	Class ID of the class to be manipulated.
cCategories	ULONG	Number of category GUIDs to remove.
rgcatid	CATID*	Array of cCategories CATID that are to be removed. Only the category IDs specified in this array are removed.
return value	
	S_OK	Success.
	E_INVALIDARG	One or more arguments are incorrect.
	others	Registry manipulation or GUID to string routine errors.
This call will be successful even if one or more of the category IDs specified are not registered for the class.
RegisterClassReqCategories
HRESULT RegisterClassReqCategories(rclsid, cCategories, rgcatid) � XE "ICatRegister Interface:RegisterClassCategories" �
Registers the class as requiring one or more component categories. On success, subsequent calls on the same machine to IsClassOfCategory(rclsid, catid), with catid an element of the rgcatid array, will return S_TRUE.
On error, some, but not all, of the category identifiers may have been successfully registered to the class in the system. That is, this function is not required to restore the caller to the exact state prior to the call.
Argument	Type	Description
rclsid	REFCLSID	Class ID of the class to set category information about.
cCategories	ULONG	Number of category GUIDs to associate as category identifiers for the class.
rgcatid	CATID*	Array of cCategories CATID to associate as category identifiers for the class.
return value	
	S_OK	Success.
	E_INVALIDARG	One or more arguments are incorrect.
	others	Registry manipulation or GUID to string routine errors.
UnRegisterClassReqCategories
HRESULT UnRegisterClassReqCategories(rclsid, cCategories, rgcatid) � XE "ICatRegister Interface:UnRegisterClassCategories" �
Removes one or more "required" category identifiers from a class. This is the inverse of the RegisterClassReqCategories method.
On error, some, but not all, of the category identifiers may have been successfully removed from the class. That is, this function is not required to restore the caller to the exact state prior to the call.
Argument	Type	Description
rclsid	REFCLSID	Class ID of the class to be manipulated.
cCategories	ULONG	Number of category GUIDs to remove.
rgcatid	CATID*	Array of cCategories CATID that are to be removed. Only the category IDs specified in this array are removed.
return value	
	S_OK	Success.
	E_INVALIDARG	One or more arguments are incorrect.
	others	Registry manipulation or GUID to string routine errors.
This call will be successful even if one or more of the category IDs specified are not registered for the class.
The ICatInformation Interface
The ICatInformation� XE "ICatInformation Interface" \b � interface allows clients to enumerate available categories, classes that belong to a particular category, and to determine if a particular class belongs to a category.
interface ICatInformation : IUnknown
{
    HRESULT EnumCategories(
        [in] LCID lcid, 
	[out] IEnumCATEGORYINFO** ppenumCategoryInfo);

    HRESULT GetCategoryDesc(
        [in] REFCATID rcatid, 
        [in] LCID lcid, 
        [out] OLECHAR* ppszDesc);

    HRESULT EnumClassesOfCategories(
	[in] ULONG cImplemented,
	[in,size_is(cImplemented)] CATID rgcatidImpl[],
	[in] ULONG cRequired,
	[in,size_is(cRequired)] CATID rgcatidReq[],
	[out] IEnumCLSID** ppenumClsid);

    HRESULT IsClassOfCategories(  
	[in] REFCLSID rclsid, 
	[in] ULONG cImplemented,
	[in,size_is(cImplemented)] CATID rgcatidImpl[],
	[in] ULONG cRequired,
	[in,size_is(cRequired)] CATID rgcatidReq[]);

    HRESULT EnumImplCategoriesOfClass(
        [in] REFCLSID rclsid, 
        [out] IEnumCATID** ppenumCatid);

    HRESULT EnumReqCategoriesOfClass(
        [in] REFCLSID rclsid, 
        [out] IEnumCATID** ppenumCatid);
};
EnumCategories
HRESULT EnumCategories(lcid, ppenumCatInfo) � XE "ICatInformation Interface:EnumCategories" �
Returns an enumerator for the component categories registered on the system.

Argument	Type	Description
lcid	LCID	Identifies the requested locale for any returned szDescription of the enumerated CATEGORYINFO structures. Typically the caller specifies GetUserDefaultLCID() for this parameter.
ppenumCatInfo	IEnumCATEGORYINFO**	Location to return an IEnumCATEGORYINFO interface which can be used to enumerate the CATIDs and localized description strings of the component categories which are registered with the system.
Return values	
	S_OK	Success. The ppenumCatInfo argument contains a valid IEnumCATIDINFO enumerator.
	E_OUTOFMEMORY	Insufficient memory to create an enumerator object to return.
	E_INVALIDARG	The ppenumCatInfo argument is an invalid pointer.
	others	Registry manipulation or GUID-to-string routine errors.
GetCategoryDesc
HRESULT GetCategoryDesc(rcatid, lcid, ppszDesc) � XE "ICatInformation Interface:GetCategoryDesc" �
Retrieves the localized description string for a specified category ID.
Argument	Type	Description
rcatid	REFCATID	Identifies the category for which the description string is to be returned.
lcid	LCID	Specifies the locale which the resulting string should be in.
ppszDesc	PWCHAR*	A pointer to the string pointer that contains the description. Callee-allocated, must be freed by the caller using CoMemTaskFree. 
return value	
	S_OK	The description string was allocated and returned successfully.
	CAT_E_CATIDNOEXIST	The Category ID rcatid is not registered.
	CAT_E_NODESCRIPTION 	There is no description string for rcatid with the specified locale.
	E_OUTOFMEMORY	Insufficient memory to create an enumerator object to return.
	E_INVALIDARG	ppenumCatInfo is an invalid pointer.
	others	Registry manipulation GUID-to-string routine errors, or task allocator errors.
EnumClassesOfCategories
HRESULT EnumClassesOfCategories(cImplemented, rgcatidImpl, cRequired,  rgcatidReq, ppenumCLSID)
Returns an enumerator over the classes that implement one or more of rgcatidImpl. If a class requires a category not listed in rgcatidReq, it is not included in the enumeration.
Argument	Type	Description
cImplemented	ULONG	Number of category IDs in the rgcatidImpl array.  May not be zero.
rgcatidImpl	CATID[]	Array of category identifiers.
cRequired	ULONG	Number of category IDs in the rgcatidReq array.  May be zero.
rgcatidReq	CATID[]	Array of category identifiers.
ppenumCLSID	IEnumCLSID**	Location to return an IEnumCLSID interface which can be used to enumerate the CLSIDs of the classes which implement category rcatid.
Return values	
	S_OK	Success. The ppenumCLSID argument points to a valid IEnumCLSID enumerator.
	E_OUTOFMEMORY	Insufficient memory to create an enumerator object to return.
	E_INVALIDARG	The ppenumCLSID argument is an invalid pointer.
	others	Registry manipulation or GUID-to-string routine errors.
IsClassOfCategories
HRESULT IsClassOfCategories(rclsid, cImplemented, rgcatidImpl, cRequired, rgcatidReq)
Determines if a class supports the specified categories. If the class implements one or more of the categories listed in rgcatidImpl, this function returns S_OK, unless the class requires a category not listed in rgcatidReq, in which case it returns E_FAIL.
Argument	Type	Description
rclsid	REFCLSID	Class ID of the class to query.
cImplemented	ULONG	Number of category IDs in the rgcatidImpl array. May not be zero.
rgcatidImpl	CATID[]	Array of category identifiers.
cRequired	ULONG	Number of category IDs in the rgcatidReq array. May be zero.
rgcatidReq	CATID[]	Array of category identifiers.
Return values	
	S_OK	Yes, rclsid is of category rcatid.
	S_FALSE	No, rclsid is not of category rcatid.
	others	Registry manipulation or GUID-to-string routine errors.
EnumImplCategoriesOfClass
HRESULT EnumImplCategoriesOfClass(rclsid, ppenumCATID)
Returns an enumerator over the CATIDs that the specified class implements. 
Argument	Type	Description
rclsid	REFCLSID	Class ID.
ppenumCATID	IEnumCATID**	Location to return an IEnumCATID interface, which can be used to enumerate the CATIDs which are implemented by rclsid.
Return values	
	S_OK	Success. The ppenumCATID argument points to a valid IEnumCATID enumerator.
	E_OUTOFMEMORY	Insufficient memory to create an enumerator object to return.
	E_INVALIDARG	The ppenumCATID argument is an invalid pointer.
	others	Registry manipulation or GUID-to-string routine errors.
EnumReqCategoriesOfClass
HRESULT EnumReqCategoriesOfClass(rclsid, IEnumCATID** ppenumCATID)
Returns an enumerator over the CATIDs that the specified class requires. 
Argument	Type	Description
rclsid	REFCLSID	Class ID.
ppenumCATID	IEnumCATID**	Location to return an IEnumCATID interface which can be used to enumerate the CATIDs which are required by rclsid.
Return values	
	S_OK	Success. The ppenumCATID argument points to a valid IEnumCATID enumerator.
	E_OUTOFMEMORY	Insufficient memory to create an enumerator object to return.
	E_INVALIDARG	The ppenumCATID argument is an invalid pointer.
	others	Registry manipulation or GUID-to-string routine errors.
Registry Entries
Classes that wish to participate in the component category scheme will have one or both of the following registry keys, depending on whether the component implements or requires one or more component categories:
HKEY_CLASSES_ROOT\CLSID\{...clsid...}\Implemented � XE "Component Categories" \b �Categories
HKEY_CLASSES_ROOT\CLSID\{...clsid...}\Required � XE "Component Categories" \b �Categories

These keys have the same structure, and are thus described together below.
The Implemented/Required Categories key has no default value, and has as subkeys GUIDs which are used as category identifiers (CATID� XE "CATID" \b �) to uniquely identify the categories for the class. The subkeys are named with a stringized GUID (CATID) and have no values (default or otherwise).
HKEY_CLASSES_ROOT\CLSID\{...clsid...}\Implemented Categories = (default)�	- “”
HKEY_CLASSES_ROOT\CLSID\{...clsid...}\Implemented Categories\{...implemented catid1...} = (default) - “”
HKEY_CLASSES_ROOT\CLSID\{...clsid...}\Implemented Categories\{...implemented catid2...} = (default) - “”�

HKEY_CLASSES_ROOT\CLSID\{...clsid...}\Required Categories = (default) - “”
HKEY_CLASSES_ROOT\CLSID\{...clsid...}\Required Categories\{...required catid1...} = (default) - “”
HKEY_CLASSES_ROOT\CLSID\{...clsid...}\Required Categories\{...required catid2...} = (default) - “”

User interfaces may require the ability to enumerate the list of categories available on a given machine. To facilitate this, the following registry key is introduced:
HKEY_CLASSES_ROOT\Component Categories	= (default)	- “”�
Each category registered on the machine has a subkey of Component Categories that provides localized human-readable names� XE "localized human-readable names" \b � for the category. Each component category key has as a named value the localized string name for the category. The name for each named value is the locale ID in decimal form (not hexadecimal).
HKEY_CLASSES_ROOT\Component Categories\{..catid...} = (default) - “”
				= “locale ID 1” - “human-readable string (locale 1)”
				= “locale ID 2” - “human-readable string (locale 2)”�

�Appendix A: Assigned GUIDs
The following range of 16 GUIDs has been generated for use by the Component Categories specification. 
0000180-0000-0000-c000-000000000046 through 000018F-0000-0000-c000-000000000046
Any allocations from this range should be documented in this appendix.
GUID�Symbolic Name�Description��0000180-...�IID_IEnumGUID���0000181-...�IID_IEnumCATEGORYINFO���0000182-...�IID_ICatRegister���0000183-...�IID_ICatInformation���0000184-...�ComponentCategoryLib�Component Category Type Library���Index
� INDEX \c "2" ��Associations, 4
CATID, 3
CLSID_ComponentCategoryManager, 5
Component Categories, 3
default class, 4
Default Classes, 4
ICatInformation Interface, 10
EnumCategories, 10
EnumClassesOfCategory, 11
GetCategoryDesc, 11
IsClassOfCategory, 12
ICatRegister Interface, 8
RegisterCategories, 8
RegisterClassCategories, 9
UnRegisterCategories, 9
UnRegisterClassCategories, 9
Insertable, 2
localized human-readable names, 3
Special case CategoryIDs, 5
TreatAs, 4
��
�	In the categorization model discussed in this document, there is no explicit type hierarchy. Note, however, that a hierarchy can be externally imposed on the category information when those classes that support more than one component category.
�	This is another aspect in which the component category model can be seen to differ from a formal type hierarchy. Formal types are typically based purely on base interfaces and derived or additional interfaces. Component Categories are designed to capture an author’s intention that one object be used interchangeably with another. 
� 	Instantiation needs to be avoided primarily for performance/user interface reasons.
� 	The Registry supports a default named value on a given key. We use the notation “(default)” to indicate the default named value. The default named value is usually (but not always) nameless.
� 	Abbreviation for HKEY_CLASSES_ROOT
� Further UI details TBD. 
� It is expected that OLE Controls will require an extension to the interfaces defined here to allow access to “Mandatory” function group information.
� 	The Registry supports a default named value on a given key. We use the notation “(default)” to indicate the default named value. The default named value is usually (but not always) nameless.
� 	Note that in earlier versions of this spec, these were named values, but are now subkeys. This facilitates future extension by providing a place where class-specific information can be placed for each category.

� TITLE  \* MERGEFORMAT �Component Categories�		Page � PAGE �18�

© Microsoft Corporation 1995. All Rights Reserved

© Microsoft Corporation, 1995. All Rights Reserved.




